
Amity Journal of Computational Sciences (AJCS) Volume 2 Issue 2
ISSN: 2456-6616 (Online)

10

www.amity.edu/ajcs

Forensic Analysis of Cloud Artefacts on the Google

Suite
Brandon Shavers1, Christopher Dube2, Kanwalinderjit Gagneja3

1,2,3Florida Polytechnic University, Lakeland, FL, USA
1bshavers2525@floridapoly.edu, 2cdube2269@floridapoly.edu, 3kgagneja@floridapoly.edu

Abstract:

This paper presents forensic analysis on cloud artefacts by

determining how and where information is stored regarding

cloud-based software. This paper specifically research and

work with the Google Suite collection of software, using

both files kept on the system via backups, information

stored in the history, and other log files stored by the

browser. In this research we have also designed and

developed a unique program that reads through log files for

specific metadata keywords related to the Google Suite

collection. The main focus of this research is to look at

modern digital forensics techniques and determine how they

can apply to this new medium.

Keywords: Cloud Artefacts, Google Drive, Google Suite,

Google Docs, Digital Forensics, Cyber trails, Circumstantial

Evidence, eDiscovery, Exchange Principle, Metadata.

1. Introduction

As technology has advanced and become prolific throughout

both the residential and commercial marketplaces, a shift

has occurred in the way that technology has been marketed.

While software and hardware use to exist in a perpetual loop

of purchase, use, and replacement as the new year’s model

came out, we no longer see this trend. Businesses have

instead moved to supporting services in the form of

infrastructure, platforms, and software as continuous,

subscription-based services.

This allows a newfound freedom to both consumers and

industry as they can more easily access their products and

services from multiple places and even different operating

systems with little to no backlash to them. This however

does change the dynamic in which data and files are linked

to a computer and user. As such, previously known and

developed digital forensic software and analytical

techniques must be adapted and changed in order to

properly work in this new medium.

A. Cloud Based Computing

The key behind the creation of these new services comes in

the form of cloud computing. The idea behind cloud

computing is that a user's input or data is being sent to a

server hosted and run by a company for a particular

purpose. For instance, a popular form is cloud storage, in

which digital space is purchased to hold photos, documents

or other data. The idea behind cloud-based computing is

that the processor and digital environment is used instead

of just the storage aspects.

B. Software as a Service

The main topic of our research deals specifically with

software being sold and used as a service. To begin these

are products like Office 365 and the Google Suite that are a

collection of pieces of software that are packaged and sold

for use by a consumer. In the case of Office 365 it is an

annual subscription that allows a user to access a myriad of

their products such as Word, PowerPoint, and Excel etc.

This is very similar to the Google Suite collection that

contains Google Docs, Google Slides, and Google Sheets.

However, Google Suites is limited in functionality and is

available for anyone to use for free.

While there are multiple types of software that fall into this

category; all software, platforms, and infrastructure sold as

a service follow a certain criterion. These are web based,

sometimes browser based, but nevertheless they always

require an Internet connection. This is due to the

previously mentioned core being made from Cloud

Computing. Since the processors and hardware are

contained on a distant server a constant connection is

needed to interact with the environment.

C. Infrastructure and Platform as a Service

While our main focus for this paper is Software as a

Service, we would be remiss if we neglected to mention

that both infrastructure and platforms are sold and used in

similar ways to their software counterparts. Both of these

types of services are more used in industry situations as the

platform provides a usable OS as a service and

infrastructure provides the backbones of computer

architecture for use. For the purposes of this paper we have

researched and worked on the Google Suites package,

specifically on the Google Drive, Docs, and Slides portion

of the package.

Amity Journal of Computational Sciences (AJCS) Volume 2 Issue 2
ISSN: 2456-6616 (Online)

11

www.amity.edu/ajcs

STORAGE FORENSICS COMPARISONS

With the use of cloud computing comes a different

interaction between the computer and a user's data. Usually

since software is installed and used on a user’s machine, all

other files and data output from it are saved and locally

stored on the user's computer.

This allows for digital investigators to use software such as

the Forensic Tool Kit (FTK) to find logged information and

files that a malicious user may try to hide or even delete.

This system works perfectly if you have access to the

hardware the user is working on. However, since Software

as a Service is hosted and run at an offsite location the files

and access logs that are typically stored locally are also

stored offsite. Because of this other method are needed to

locate and find this information. For our purposes the files

we want to view names and access logs for are documents

and slides stored on a google drive.

D. Digital Forensics in Relation to Services

Since the files and data are not generally stored or worked

on locally normal log and registry files will not be updated

with the files and work done. As such the focus must

change from the logs of software to the web browsers logs.

Web browsers hold information on all sites visited and used

during the users’ sessions. During our time working on this

paper we used Firefox to test and view what data can be

extracted from its files. This quickly became quite an issue

as most of these files are held in weird file types such as

.sqlite, .dump, .log. For the .sqlite files we used a simple

database opener so that the file was properly opened and

formatted to be read. The log and dump files were a bit

different. At the beginning we opened and read through

them in plaintext, using find and grep features from text

editors and console commands, but this quickly became an

issue as discussed in a later section.

3. Google Drive Hidden Application Data

To begin our forensic discovery, we started by pursuing

cyber trails and investigating some of the log files. At that

time, we discovered many interesting files that can be

utilized to determine personal information about the user.

For example, their email address, which we found

unencrypted within one of the log files. Most of the files we

needed to examine for our forensic analysis were located

within hidden system folders containing temporary

application data. More specifically the folder utilized in our

investigation was located at:

“C:\Users\User\AppData\Local\Google\Drive\user_default”

as shown in figure 1 below.

Fig. 1. Hidden Application Data Root Folder

Fig. 2. Unreadable database file open within notepad++.

Locating these files required going into the Windows

folder/file view properties, enabling hidden files/folders and

navigating through the temporary application data. Upon

our initial inspection, where we observed the files in

question via notepad, we were unable to determine any

useful information which can be seen in figure 2, which

leads us to our next section.

4. Findings in SQL Databases

After using the SQLite browser to look inside these

database files we found multiple interesting and useful files.

These files basically contain a database with multiple tables

containing all the information we could possibly want. This

includes file names, create dates, modified times, if sharing

has been turned on and so on. The first file we investigated

was the snapshot.db file, more specifically, the cloud_entry

table which is embedded within this file which can be seen

in figure 3.

Fig. 3. Snapshot.db cloud entry table

Amity Journal of Computational Sciences (AJCS) Volume 2 Issue 2
ISSN: 2456-6616 (Online)

12

www.amity.edu/ajcs

Some of the found data related to

● File name

● Created (UNIX Timestamp)

● Modified (UNIX Timestamp)

● URL

● Checksum (MD5 hash)

● Size

● Shared

Within the same snapshot.db file we also investigated the

local_entry table. Which can be seen in figure 4. This

contained data relating to the

● File name

● Modified (UNIX Timestamp)

● Checksum (MD5 hash)

● Size

Fig. 4. Snapshot.db local entry table.

We also investigated the sync_config.db file, which can be

seen in figure 5. This contained data relating to the

● Client version installed

● Local Sync Root Path

● User Email

Fig. 5. Sync_config.db data table.

With the information mentioned above, an investigator

would have everything they would need, bar the actual files

themselves, to conduct a thorough investigation and have

admissible circumstantial evidence in a court of law.

During our investigation, we also browsed over the

Sync_log.log file. In this file we found lots of useful

information such as file names, dates, modified, sync

sessions, file created, file saved, file deleted etc. In one

particular log file, there were approximately 650,000 lines

of text. Because of the detail of this information we decided

it would be best to find a way to parse through the

information.

E. Log Examination Dilemma

While the sqlite file were easily opened and read in the

sqlite browsing program, we did not have as much luck

with the log files. To start the files like places.sqlite

contain all of the history information available from the

user, since the browser was implemented. As such the files

are very large and cumbersome to work with, especially

with just a basic find command at your disposal. In addition

the files contain unique characters that cannot be read by

any text editors. These unique characters in fact cause most

of the problems with reading and parsing through the files.

Since they are not contained in normal ASCII conventions

most programs crash upon getting to them, and others can

have mixed results, as the characters mess with how the

find feature is run. These files however contain extremely

useful information to an investigator, which is why we

devised our own program to circumnavigate these issues.

5. Log Parser

In order to expedite our forensic analysis of the large log

files we decided to design a file parser that takes the static

file names we have found and grabs out only pertinent

information from them. This would be things such as the

doc names, if they are shared and a few other choice items.

We decided to implement this with Java, as we wanted

maximum cross platform compatibility. Now this may not

seem to relate to the information we gained from the

database, however there's one particular useful thing held in

the log files but not the .db files. The log files can contain

the URL link that shares a document to many people. As

such if the files are listed in the database as shared it is

possible to parse through the logs to find a link to gain

access to the file.

In addition to the possibility of finding links to a user's

files, there is also the possibility to find what files have

been worked on and edited with the correct keywords. The

personal three that we find to be the most useful are

Amity Journal of Computational Sciences (AJCS) Volume 2 Issue 2
ISSN: 2456-6616 (Online)

13

www.amity.edu/ajcs

usp=sharing as this is used to end google drive files that

have been shared. docs.google and drive.google are two

others that work well in showing what files have been

accessed and used by the user. Our desire in making this

parser was to create a simple to use and effective alternative

to the grep command, which is why we elected to make it

console based, and not in a GUI. In addition, by including

tracking on the number of instances a keyword is used, the

program itself can also output the number of times a

particular URL was accessed. While this would not seem

pertinent to start multiple visits to an illicit or illegal site can

show intent in a court of law.

6. Log Parser Code Explanation

Below is the code devised and written up for the log parser.

The design is made to read through and output the data and

links that the user desires.

import java.io.BufferedReader;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.InputStreamReader;

import java.util.Scanner;

The additional functions used to design and execute this

program are as follows:

 Scanner Keyboard = new Scanner(System.in);

 System.out.print("Please enter The file to use: ");

 String fileIn = Keyboard.next();

Opens up a scanner function that reads in user input. The

user is prompted for the file that data should be parsed from

 System.out.print("Please enter The text to look for: ");

 String word = Keyboard.next();

Prompts the user to input a keyword or phrase they are

looking for.

 String historyHolder = "";

 int [] indexHolder;

 int count = 0;

 String line;

 String[] data;

 int arrayCounter;

Defines variable for use throughout the program.

 try {

 BufferedReader br = new BufferedReader(new

InputStreamReader(new FileInputStream(fileIn),"UTF-8"));

Begins a try statement to bring in the data from the user-

inputted file. The distinction of UTF-8 was made as the

encoding method as it strips the unknown characters

previously causing crashes with other text editors and

programs.

 while ((line = br.readLine()) != null) {

 historyHolder =

historyHolder.concat(line);

 }

Begins to bring in the data from the file. Places the data in

a large string variable called historyHolder that is used to

parse out the data from later on.

br.close();

} catch (FileNotFoundException e) { e.printStackTrace(); }

catch (IOException e) { e.printStackTrace();

 }

Closes the reader and sets up error catching in the case that

an error is found. This is done to catch the program if the

file a user inputted is not located or if a problem occurs

when reading the file.

while (!word.equals("Stop")){

 count = 0;

Starts a while loop that is setup to allow multiple keywords

to be tested before closing out of the program. Count is set

back to 0 preventing issues with doubling up on the count

size.

 for (int i = -1; (i = historyHolder.indexOf(word, i + 1))

 != -1; i++) {

 count++;

 }

Retrieves a count of all instances that the keyword appears

in the selected file. This is done as a precursor to actually

grabbing the necessary data as well as to be outputted later

on.

indexHolder = new int[count];

int arrayCounter = 0;

Amity Journal of Computational Sciences (AJCS) Volume 2 Issue 2
ISSN: 2456-6616 (Online)

14

www.amity.edu/ajcs

Sets up the holder of the index number of our keyword in an

array fashion, and sets up a counter to run through the array

in the next step.

 for (int i = -1; (i = historyHolder.indexOf(word, i + 1))

 != -1; i++) {

 indexHolder[arrayCounter] = i;

 arrayCounter++;

 }

These lines of code are the backbone of our data retrieval

effort. This works as a for loop that finds the instances of

the data we want to retrieve and increments our counter by

one to keep track of how many instances of our keyword we

have found. In addition this takes in the positional data for

said keywords. This is vital for the upcoming steps.

 data = new String[arrayCounter];

 int begin;

 int end;

 char x;

We assign the data array the number of instances it will

need to take in, gotten from our previous set, and sets up

three variables for use in grabbing the data we are to

retrieve.

for (int y = 0; y < arrayCounter; y++){

 begin = indexHolder[y];

 end = indexHolder[y];

 x = historyHolder.charAt(begin);

Set up to run through all of the instances of the keyword and

place the corresponding indexes in beginning and ending

variables so that they can be used to find the beginning and

end of the URL.

 while(x != ' %'){

 begin--;

 x = historyHolder.charAt(begin);

 }

This while loop is designed to continually run until a

percentage sign is found in the String containing all of the

history information. This is designed to find the first

character in the URL as all of the URLs that have been

found precede the http request with a percentage mark.

Since the parser is used to find which URL’s have been

accessed by the user this has been determined to be the best

way to find its beginning.

 x = historyHolder.charAt(end);

 while(x != ' '){

 end++;

 x = historyHolder.charAt(end);

 }

This statement is exactly the same as the previous except

the while statement is in reverse, searching for upcoming

blank spaces that signify the end of a URL.

data[y] = historyHolder.substring(begin, end);

 System.out.println(data[y]);

The found URLs are then moved to a separate array for

storage and printing to screen, along with the total number

of instances found.

System.out.println("Please enter The text to look

for

if complete enter Stop: ");

 word = Keyboard.next();

 }

 Keyboard.close();

Finally, we check with the user to start another search, or

they can decline with Stop. This is designed this way as

previously mentioned the file’s data takes around ten

minutes to be properly placed into useable storage so it is

much easier to run multiple searches once it is loaded than

one per run of the program.

 long startTime = System.currentTimeMillis();

 long endTime = System.currentTimeMillis();

 long totalTime = endTime - startTime;

The addition of time is done as quality of life updates.

They were done to help relay how much total time it took to

find a user’s query. The code output is shown in figure 6.

Fig. 6. Parser Program Output

Amity Journal of Computational Sciences (AJCS) Volume 2 Issue 2
ISSN: 2456-6616 (Online)

15

www.amity.edu/ajcs

7. Differences Between Parsers

The reasoning behind the need of a newly constructed parser

was due to the fact that current parsers did not do exactly

what we were looking for. We attempted grep commands as

well as normal find commands on the plain text versions of

some of our files. These where done in normal applications

such as TextEdit and notepad. This, however, always

looped back to the same problem with special characters.

With the discovery of the file sharing links being valid for

months after their initial creation we came to the conclusion

that this would be a necessary step in this research. This is

due to not only having a chance to access and see what

some of the files contained but also to have access to how

many times they accessed them. While there are a variety

of tools made as specific log parsers, they too were designed

around the SQL counterparts of the log files, which for our

circumstances of finding exact URL’s would not work.

In addition, even the few that could relay this information,

neglected to show the number of instances it was accessed.

While this is the case, a normal log parser that works

through SQL works within a fraction of the time. This is

mainly due to the file format not having to be changed in

order to read in this style of file. A normal SQL file is

formatted and designed compactly so that a designated log

reader can read it. In our case the history file has its own

special characters that can be more easily read by a browser.

Because of this it removes the ease of readability with

outside programs and for this instance, what we are trying to

do. This being said our design is a streamlined version,

specifically designed to find URL’s and how many times

they have been accessed, which does not have a large user

base outside of digital forensics.

One does not really understand the scope in which browsers

and software log you’re every action and move until one

jump head deep into it. The files and data we parsed through

ended up being quite large and mostly unusable at the start.

The interesting part was the gems we gathered from the

rough lumps of coal we began with. Things like the sharing

links being usable months after creation was completely

unthinkable to us, and it was extremely gratifying to be able

to find and parse through the data to find new ways to

approach problems. While we began thinking we would

find file names and account information at most, we happily

call this a success with accomplishing this and much more.

8. Conclusion

While digital forensics is an ever-changing field, as is the

field of Computer Science in general, our methods of data

finding must be just as flexible. Since cloud computing

removes a majority of the locally hosted information on

files accessed and used, we are required to think outside of

normal terms and find unique ways to retrieve the necessary

information. Things such as browser log files, backup

folders and user information that is stored from browsers or

the applications link to the server all become viable and

useful files in finding this information. In addition,

workarounds and forward thinking are necessary to

continually move forward in this field. Problems such as

logs being virtually unusable is a hurdle that has to be

crossed, a perspective that needs to be changed so that new

useful insight can be gained.

REFERENCES

[1] Chung, Hyunji, et al. “Digital Forensic Investigation of

Cloud Storage Services.” Digital Investigation, vol. 9,

no. 2, 2012, pp. 81–95., 18 Sept. 2017.

[2] Price, Rob. “Google Drive Now Hosts More than 2

Trillion Files.” Business Insider, Business Insider, 6

May 2017, www.businessinsider.com/2-trillion-files-

google-drive-exec-prabhakar-raghavan-2017-5.

[3] “First Character of the Reading from the Text File:”

Stack Overflow:

stackoverflow.com/questions/17405165/first-character-

of-the-reading-from-the-text-file-%C3%AF.

[4] K. Kaur and X. Xiaojiang Du and K. Nygard,

“Enhanced routing in Heterogeneous Sensor

Networks”, IEEE Computation World’09, pp. 569-574,

Athens, Greece, Nov. 15-20, 2009.

[5] Lauren Evanoff, Nicole Hatch, Gagneja K.K., “Home

Network Security: Beginner vs Advanced”, ICWN, Las

Vegas, USA, July 27-30, 2015.

[6] Gagneja K.K. and Nygard K., "Heuristic Clustering

with Secured Routing in Heterogeneous Sensor

Networks", IEEE SECON, New Orleans, USA, pages

51-58, June 24-26, 2013.

[7] Gagneja K.K., “Knowing the Ransomware and

Building Defense Against it - Specific to HealthCare

Institutes”, IEEE MobiSecServ, Miami, USA, pp. 1-5,

Feb. 11-12, 2017.

[8] Gagneja K.K., “Secure Communication Scheme for

Wireless Sensor Networks to maintain Anonymity”,

IEEE ICNC, Anaheim, California, USA, pp. 1142-

1147, Feb. 16-19, 2015

[9] Gagneja K.K., "Pairwise Post Deployment Key

Management Scheme for Heterogeneous Sensor

Networks", 13th IEEE WoWMoM 2012, San

Francisco, California, USA, pages 1-2, June 25-28,

2012.

http://www.businessinsider.com/2-trillion-files-google-drive-exec-prabhakar-raghavan-2017-5
http://www.businessinsider.com/2-trillion-files-google-drive-exec-prabhakar-raghavan-2017-5

Amity Journal of Computational Sciences (AJCS) Volume 2 Issue 2
ISSN: 2456-6616 (Online)

16

www.amity.edu/ajcs

[10] Gagneja K.K., “Global Perspective of Security

Breaches in Facebook”, FECS, Las Vegas, USA, July

21-24, 2014.

[11] Gagneja K.K., "Pairwise Key Distribution Scheme for

Two-Tier Sensor Networks", IEEE ICNC, Honolulu,

Hawaii, USA, pp 1081-1086, Feb. 3-6, 2014.

[12] Gagneja K., Nygard K., "Energy Efficient Approach

with Integrated Key Management Scheme for Wireless

Sensor Networks", ACM MOBIHOC, Bangalore, India,

pp 13-18, July 29, 2013.

[13] Gagneja K.K., Nygard K., "A QoS based Heuristics for

Clustering in Two-Tier Sensor Networks", IEEE

FedCSIS 2012, Wroclaw, Poland, pages 779-784, Sept.

9-12, 2012.

[14] K. K. Gagneja, K. E. Nygard and N. Singh, "Tabu-

Voronoi Clustering Heuristics with Key Management

Scheme for Heterogeneous Sensor Networks", IEEE

ICUFN 2012, Phuket, Thailand, pages 46-51, July 4-6,

2012.

[15] Gagneja K.K., Nygard K., "Key Management Scheme

for Routing in Clustered Heterogeneous Sensor

Networks", IEEE NTMS 2012, Security Track,

Istanbul, Turkey, pp. 1-5, 7-10 May 2012.

[16] Runia Max, Gagneja K.K., “Raspberry Pi Webserver”,

ESA, Las Vegas, USA, July 27-30, 2015.

[17] A. S. Gagneja and K. K. Gagneja, "Incident Response

through Behavioral Science: An Industrial Approach,"

2015 International Conference on Computational

Science and Computational Intelligence (CSCI), Las

Vegas, NV, 2015, pp. 36-41.

[18] Tirado E., Turpin B., Beltz C., Roshon P., Judge R.,

Gagneja K., “A New Distributed Brute-Force Password

Cracking Technique”, Future Network Systems and

Security, FNSS Communications in Computer and

Information Science, vol. 878, pp 117-127, 2018

[19] Caleb Riggs, Tanner Douglas and Kanwal Gagneja,

"Image Mapping through Metadata," Third

International Conference on Security of Smart Cities,

Industrial Control System and Communications

(SSIC), Shanghai, China, 2018, pp. 1-8.

[20] Keely Hill, Gagneja K.K., “Concept network design for

a young Mars science station and Trans-planetary

communication", IEEE MobiSecServ 2018, Miami,

FL, USA, Feb. 24-25, 2018.

[21] Javier Campos, Slater Colteryahn, Gagneja Kanwal,

“IPv6 transmission over BLE Using Raspberry PI 3",

International Conference on Computing, Networking

and Communications, Wireless Networks (ICNC'18

WN), March 2018, pp. 200-204.

[22] Gagneja K., Jaimes L.G., “Computational Security and

the Economics of Password Hacking”, Future Network

Systems and Security. FNSS 2017. Communications in

Computer and Information Science, vol. 759, pp. 30-

40, Springer, 2017.

[23] Gagneja K.K. Ranganathan P., Boughosn S., Loree P.

and Nygard K., "Limiting Transmit Power of Antennas

in Heterogeneous Sensor Networks", IEEE EIT2012,

IUPUI Indianapolis, IN, USA, pages 1-4, May 6-8,

2012.

